

MATERIAL SAFETY DATA SHEET

SECTION 1:CHEMICAL PRODUCT SND COMPANY IDENTIFICATION

Updated: Jun 19, 2020

Chemical/Trade Name (as used on label)	Chemical Family/Classification
Sealed Valve Regulated Lead Acid Battery	Electric Storage Battery
Supplier's Name	Address
Sealed Performance Batteries	1 Ant Road, Yatala, Brisbane, QLD, 4207, Australia

CONTACT

SPB Head Office (Australia)	(07) 3386 1102
-----------------------------	----------------

SECTION 2: HAZARDS IDENTIFICATION

Product contains toxic chemicals that are subject to the reporting requirements of Section 302 and 313 of the Emergency Planning and Community Right-to-Know Act of 1986).

SECTION 3: COMPOSITION / INFORMATION ON INGREDIENTS								
Exposure Limits					Air Exposure Limits (ug/m³)			
Material		% By Wt.	CAS Number	OSHA	AGGIH	NIOSH		
Lead		57	7439-92-1	50	150	100		
Lead Oxide		22	1309-60-0	50	150	100		
Electrolyte (sul	furic acid)	14	7664-93-9	1	1	1		
SECTION 4: FIRST AID PROCEDURES:								
Inhalation	Remove from exposure and apply oxygen if breathing is difficult.							
Skin	Wash with plenty of soap and water. Remove any contaminated clothing.							
Eyes	Flush with plenty of water immediately for at least 15 minutes. Consult a physician.							
Ingestion	Consult a physician immediately.							

SECTION 5: FIRE FIGHTING MEASURE

Flash Point	Hydrogen = 259 ℃			
Auto ignition Temperature	Hydrogen = 580°C			
Extinguishing Media	Dry Chemical, foam, CO2			
Unusual Fire and Explosion Hazards	Hydrogen and oxygen gases are produced in the cells during normal battery operation (hydrogen is flammable and oxygen supports combustion). These gases enter the air through the vent caps. To avoid the chance of a fire or explosion, keep sparks and other sources of ignition away from the battery.			

SECTION 6: ACCIDENTAL RELEASE MEASURES

Remove combustible materials and all sources of ignition. Cover sills with soda ash (sodium carbonate) or quicklime (calcium oxide). Mix well. Make certain mixture is neutral then

collect residue and place in a drum or other suitable container. Dispose of a hazardous waste.

Wear acid-resistant boots, chemical face shield, chemical splash goggles, and

b. acid-resistant gloves.

Do not release un-neutralized acid.

SECTION 7: HANDLING AND STORAGE

Hygiene Practices:

Following contact with internal battery components, wash hand thoroughly before eating, drinking, or smoking.

Respiratory Protection:

Wear safety glasses. Do not permit flames or sparks in the vicinity of battery(s). If battery electrolyte (acid) comes in contact with clothing, discard clothing.

Other Handling and Storage Precautions:

None Required.

SECTION 8: EXPOSURE CONTROLS, PERSONAL PROTECTION

Engineering Controls:

Store lead/acid batteries with adequate ventilation. Room ventilation is required for batteries utilized for standby power generation. Never recharge batteries in an unventilated, enclosed space.

Work Practices:

Do not remove vent caps. Follow shipping and handling instructions that are applicable to the battery type. To avoid damage to terminals and seals, do not double-stack industrial batteries.

Respiratory Protection:

None required under normal handling conditions. During battery formation (high-rate charge condition), acid mist can be generated which may cause respiratory irritation. Also, if acid spillage occurs in a confined space, exposure may occur. If irritation occurs, wear a respirator suitable for protection against acid mist.

Eyes and Face:

Chemical splash goggles are preferred. Also acceptable are "visor-gogs" or a chemical face shield worn over safety glasses.

Hands, Arms, Body:

Vinyl coated, VC, gauntiet type gloves with rough finish are preferred.

Other Special Clothing and Equipment:

Safety shoes are recommended when handling batteries. All footwear must meet requirements of EN ISO 20345:2011

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Material is Solid at normal temperatures.

Electrolyte:

Boiling Point	23 0 ℉ / 110 ℃	Melting Point	Lead 327.4 ℃
Specific Gravity	1.215 - 1.350	Vapor Density	Not determined
% Volatiles By Weight	Not Applicable	Vapor Pressure	Not determined
Solubility in Water	100% (electrolyte)	Evaporation Rate	Not determined

Appearance and Odor: Electrolyte is a clear liquid with a acidic odor

SECTION 10: CHEMICAL STABILITY AND REACTIVITY

Stability	Stable
Conditions to Avoid	Sparks and other sources of ignition

Incompatibility: (materials to avoid)

- 1. Lead/lead compounds: Potassium, carbides, sulfides, peroxides, phosphorus, sulfur.
- Battery electrolyte (acid): Combustible materials, strong reducing agents, most metals,
- carbides, organic materials, chlorates, nitrates, picrates, and fulminates.

Hazardous Decomposition Products

- 1. Lead/lead compounds: Oxides of lead and sulfur.
- 2. Battery electrolyte (acid): Hydrogen, sulfur dioxide, and sulfur trioxide.

Conditions to Avoid

High temperature. Battery electrolyte (acid) will react with water to produce heat. Can react with oxidizing or reducing agents.

SECTION 11: TOXICALOGICAL INFORMATION

Under normal operating conditions, the internal material will not be hazardous to your health. Only internally exposed material during production or case breakage or extreme heat (fire) may be hazardous to your health.

Routes of Entry:

Installation	Acid mist from formation process may cause respiratory irritation.
Skin Contact	Acid may cause irritation, burns and/or ulceration.
Skin Absorption	Not a significant route of entry.
Eye Contact	Acid may cause sever irritation, burns, cornea damage and/or blindness.
Ingestion	Acid may cause irritation of mouth, throat, esophagus and stomach.

Sign and Symptoms of Over Exposure:

Acute Effects	Over exposure to lead may lead to loss of appetite, constipation, sleeplessness and fatigue. Over exposure to acid may lead to skin irritation, corneal damage of the eyes and upper respiratory system.
Chronic Effects	Lead and its components may cause damage to kidneys and nervous system. Acid and its components may cause lung damage and pulmonary conditions.
Potential to Cause Cancer	The International Agency for Research on Cancer has classified "strong inorganic acid mist containing sulfuric acid" as a Category 1 carcinogen, a substance that is carcinogenic to humans. This classification does not apply to liquid forms of sulfuric acid or sulfuric acid solutions contained within a battery. Inorganic acid mist is not generated under normal use of this product. Misuse of the product, such as overcharging, may however result in the generation of sulfuric acid mist.

SECTION 12: ECOLOGICAL INFORMATION

California Proposition 65:

The State of California has determined that certain battery terminals and related accessories contain lead and lead compounds, chemicals known to the State of California to cause cancer and reproductive harm.

Warming: Wash hands thoroughly after handling batteries.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Method:

Battery electrolyte (acid): Neutralize as above for a spill, collect residue, and place in a drum or suitable container. Dispose of as hazardous waste. Do not flush lead contaminated acid to sewer.

Batteries:

Send to lead smelter for reclamation following applicable Federal, state and local regulations. Product can be recycled along with automotive (SLI) lead acid batteries..

SECTION 14: TRANSPORTATION INFORMATION

Note:

To transport these batteries as "non-spillable" they must be shipped in a condition that would protect them from short-circuits and be securely packaged so as to with stand conditions normal to transportation by a consumer, in or out of a device, they are unregulated thus requiring no additional special handling or packaging, so We hereby certify that our batteries are non-dangerous and non-hazardous materials under IMDG regulations .

UN Number: 2800

DOT: 49 CFR 173.159(f) and 49 CFR 173.159a

The batteries have been test in accordance with the vibration and pressure differential tests found in 49 CFR 173.159(f) and "crack test" found at 49 CFR 173.159a;

When offered for transport, the batteries must be protected against short circuits and securely packaged in accordance with 49 CFR 173.159a; and the battery and outer packaging must be marked NONSPILLABLE BATTERY as required by 49 CFR 173.159a.

IATA: Packing Instruction 872 and Special Provision A67

The batteries have been tested in accordance with the vibration and pressure differential tests found in Packing Instruction 872 AND "Crack Tesst" found in Special Provision A67 of the Internatinal Air Transport, the batteries must be protected against short circuits and securely packaged in accordance with Special Provision A67.

IMDG: Special Provision 238.1 and 238.2

The batteries have been tested in accordance with the vibration and pressure differential tests and "crack test" found in special Provision 238.1 and 238.2.

When offered for transport, the batteries must be protected against short circuits and securely packaged in accordance with Special Provision 238.1 and 238.2.

SECTION 15: REGULATORY INFORMATION

Intermational Inventories

Chemical	TSCA	DSL	NDSL	EINECS	ELINCS	ENCS	IECSC	KECL	PICCS	AICS
Name										
Lead	Present	Х		Present		Present	X	Present	Х	Χ
Sulfuric	Present	Χ		Present		Present	X	Present	Х	Χ
Acid										
Tin	Present	Х		Present			X	Present	Х	Χ
Calcium	Present	Х		Present			Х	Present	Х	Х

SECTION 16: OTHER INFORMATION

This product is classified as "non-spillable" for the purpose of

transportation by DOT, and IATA/ICAO as result of passing the Vibration and Pressure Differential Test described in DOT[49 CFR 173.159(d) and IATA/ICAO [Special Provision A67].

It can be safely transported on deck, or under deck stored on either a passenger or cargo vessel as result of passing the Vibration and Pressure Differential Tests as described in the regulations.